
Artificial Intelligence
CE-417, Group 1

Computer Eng. Department
Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original
slides for the textbook, and CS-188 (UC. Berkeley).

1

Constraint Satisfaction Problems

2

Constraint satisfaction problems (CSPs)

• Standard search problem:
• state is a “black box”

• any old data structure that supports goal test,
evaluation, and successor

• CSP:
• state is defined by variables Xi with values from

domain Di

• goal test is a set of constraints specifying
allowable combinations of values for subsets of
variable

• Allows useful general-purpose algorithms with
more power than standard search algorithms 3

Example: Map-Coloring

• Variables WA, NT, Q, NSW, V , SA, T

• Domains Di = {red, green, blue}

• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT (if the language allows this), or
(WA, NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .} 4

Example: Map-Coloring (cont.)

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =green} 5

Constraint graph

• Binary CSP: each constraint relates at most two variables

• Constraint graph: nodes are variables, arcs show constraints

• General-purpose CSP algorithms use the graph structure
to speed up search. e.g., Tasmania is an independent subproblem! 6

7

Example: n-queens

• Formulation 1:

• Variables:

• Domains:
• Constraints

8

Example: Cryptarithmetic
• Variables:

• Domains:

• Constraints:

10

Real-World CSPs

• Assignment problems: e.g., Who teaches what class
• Timetabling problems: e.g., Which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … Lots more!

• Many real-world problems involve real-valued variables…

Varieties of CSPs

• Discrete variables

• finite domains; size d ⇒ O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

• infinite domains (integers, strings, etc.)

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3
• linear constraints solvable, nonlinear undecidable

• Continuous variables
• e.g., start/end times for Hubble Telescope observations

• linear constraints solvable in poly time by LP methods

11

Varieties of constraints

• Unary constraints involve a single variable,

• e.g., SA ≠ green

• Binary constraints involve pairs of variables,
• e.g., SA ≠ WA

• Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column
constraints

• Preferences (soft constraints), e.g., red is better than green often representable
by a cost for each variable assignment

→ constrained optimization problems
12

Converting n-ary CSP to a binary CSP

• Is this possible?

13

Standard search formulation (incremental)

• Let’s start with the straightforward, dumb approach, then
fix it.

• States are defined by the values assigned so far

• Initial state: the empty assignment, { }

• Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.

⇒ fail if no legal assignments (not fixable!)

• Goal test: the current assignment is complete

14

Standard search formulation (incremental) (cont.)

• This is the same for all CSPs!

• Every solution appears at depth n with n variables ⇒ use depth-first search

• Path is irrelevant, so can also use complete-state formulation.

• b = (n − l)d at depth l, hence n! dn leaves!!!!

15

Backtracking search

• Variable assignments are commutative, i.e.,
[WA=red then NT =green] same as [NT =green then WA=red]

• Only need to consider assignments to a single variable at each
node

⇒ b=d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments is
called backtracking search.

• Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25
16

Backtracking search

17

Backtracking search (cont.)

18

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure?

19

Minimum remaining values

• Minimum remaining values (MRV):
choose the variable with the fewest legal values

20

Degree heuristic

• Tie-breaker among MRV variables

• Degree heuristic:
choose the variable with the most constraints on remaining variables

21

Least constraining value

• Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

• Combining these heuristics makes 1000 queens feasible
22

Forward checking

• Idea: Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

23

Constraint propagation

• Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

• NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

24

Arc consistency

• Simplest form of propagation makes each arc consistent

• X → Y is consistent iff. for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked

• Arc consistency detects failure earlier than forward checking. Can be run as a
preprocessor or after each assignment 25

26

Arc consistency algorithm

• O(n2d3), can be reduced to O(n2d2) 27

Arc consistency for n-ary CSP?

• How to generalize to the n-ary CSP case?

28

30

Limitations of Arc Consistency

• After enforcing arc consistency:

• Can have one solution left

• Can have multiple solutions left

• Can have no solutions left (and not
know it)

• Arc consistency still runs inside a
backtracking search!

What went
wrong here?

31

k-Consistency

• Increasing degrees of consistency

• 1-consistency (node consistency): each single node’s domain
has a value which meets that node’s unary constraints

• 2-consistency (arc consistency): for each pair of nodes, any
consistent assignment to one can be extended to the other

• k-consistency: for each k nodes, any consistent assignment to
k-1 can be extended to the kth node.

• Higher k more expensive to compute

• (You need to know the k=2 case: arc consistency)

32

Strong k-Consistency
• Strong k-consistency: also k-1, k-2, … 1 consistent

• Claim: strong n-consistency means we can solve without backtracking!

• Why?
• Choose any assignment to any variable
• Choose a new variable
• By 2-consistency, there is a choice consistent with the first
• Choose a new variable
• By 3-consistency, there is a choice consistent with the first 2
• …

• Lots of middle ground between arc consistency and n-consistency! (e.g. k=3,
called path consistency)

Problem structure

• Tasmania and mainland are independent subproblems

• Identifiable as connected components of constraint graph
33

Problem structure (cont.)

• Suppose each subproblem has c variables out of n total

• Worst-case solution cost is n/c · dc, linear in n

• E.g., n=80, d=2, c=20

• 280 = 4 billion years at 10 million nodes/sec

• 4 · 220 = 0.4 seconds at 10 million nodes/sec

34

Tree-structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(n.d2)
time.

• Compare to general CSPs, where worst-case time is O(dn).

• This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions and the
complexity of reasoning.

35

Algorithm for tree-structured CSPs
1. Choose a variable as root, order variables from root to leaves such that

every node’s parent precedes it in the ordering

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj).

Why doesn’t this algorithm work with cycles in the constraint graph?
36

Nearly tree-structured CSPs

• How to solve the CSP corresponding to this constraint graph using tree
structured CSP?

37

Nearly tree-structured CSPs (cont.)

• Conditioning: instantiate a variable, prune its neighbors’ domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

• Cutset size c ⇒ runtime O(dc · (n − c)d2), very fast for small c. 38

39

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

40

Tree Decomposition

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
gree on shared vars

NT

SA

¹
WA

¹ ¹

Q

SA

¹
NT

¹ ¹

A
gree on shared vars

NS
W

SA

¹
Q

¹ ¹

A
gree on shared vars

V

SA

¹
NS
W

¹ ¹

Iterative algorithms for CSPs

• Hill-climbing, simulated annealing typically work with “complete” states, i.e., all
variables assigned.

• To apply to CSPs:

• allow states with unsatisfied constraints

• Operators: reassign variable values

• Variable selection: randomly select any conflicted variable

• Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hill-climb with h(n) = total number of violated constraints

41

Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)

• Operators: move queen in column

• Goal test: no attacks

• Evaluation: h(n) = number of attacks

42

Summary

• CSPs are a special kind of problem:

• states defined by values of a fixed set of variables

• goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

44

Summary (cont.)

• Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

• The CSP representation allows analysis of problem structure

• Tree-structured CSPs can be solved in linear time

• Iterative min-conflicts is usually effective in practice

45

