-4 B

'
N’

Artificial Intelligence
CE-417, Group 1
Computer Eng. Department
Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D. —/ —

Courtesy: Most slides are adopted from CSE-57Z3 (Washington U.)Yoriginal
slides for the textbook, and CS-188 (UC. Berkeley).
"/ |

N’ .

Constraint Satisfaction Problems

—
\/ \/Lonsfrqint satisfaction problems (CSPs)

—

¢ Standard search problem:
* state is a “black box”

* any old data structure that supports goal test,

evaluation, and successor

» CSP:

* state is defined by variables X. with values from

domain D,

* goal test is a set of constraints specifying
allowable combinations of values for subsets of

variable

* Allows useful general-purpose algorithms with
more power than standard search algorithms

Example: Map-Coloring

Northern
Territory
Western Queensland

Australia

South
Australia

New South Wales

Victoria

Tasmania

* Variables WA, NT, Q, NSW, V, SA, T
* Domains D; = {red, green, blue}

* Constraints: adjacent regions must have different colors

e.g., WA # NT (if the language allows this), or

(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

~ N4

N/

\/ < Example: Map-Coloring (cont.)

T

Tasm'ia

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =green} s \/

¥ NS N i\ /

-
- Constraint graph

~—

S—

* Binary CSP: each constraint relates at most two variables

* Constraint graph: nodes are variables, arcs show constraints

* General-purpose CSP algorithms use the graph structure

to speed up search. e.g., Tasmania is an independent subproblem!

v\/\./

\/ - Example: n-queens

* Formulation 1:

* Variables: X

+ Domains: {0, 1}
* Constraints
Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi.j.k (Xij Xg;) € {(0,0),(0,1), (1,0} X, =
Vi, j, k (Xij, Xigk j+k) € 1(0,0),(0,1),(1,0)} 2% ®)
Vi, j, k (X5, Xixkj—k) € 1(0,0),(0,1),(1,0)}

"V Q&

- N/

\«/ Example: Cryptarithmetic
* Variables: T WO
FTUWRO X1 Xo X3 + T WO
F O UR
* Domains:

{0,1,2,3,4,5,6,7,8,9}

e Constraints: M w) (R) YO
alldiff(F, T, U, W. R, O)

O4+0=R+10- - X3 %(5

o’

J

3 Real-World CSPs

* Assignment problems: e.g., Who teaches what class
* Timetabling problems: e.g., Which class is offered when and where?
* Hardware configuration

* Transportation scheduling

* Factory scheduling

* Circuit layout

* Fault diagnosis

e ... Lots more!

* Many real-world problems involve real-valued variables...

J ~ Varieties of CSPs

* Discrete variables

S

* finite domains; size d = O(d") complete assignments

* e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

* infinite domains (integers, strings, etc.) -

* e.g., job scheduling, variables are start/end days for each job
* need a constraint language, e.g., Startlob, + 5 < Startlob,

* linear constraints solvable, nonlinear undecidable

e Continuous variables

* e.g., start/end times for Hubble Telescope observations

* linear constraints solvable in poly time by LP methods

J Varieties of constraints

—

~ Unary constraints involve a single variable,

* e.g., SA # green

* Binary constraints involve pairs of variables,

e e.g., SA = WA

* Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column

constraints

* Preferences (soft constraints), e.g., red is better than green often representable

by a cost for each variable assignment

— constrained optimization problems

-

Converting n-ary CSP to a binary CSP

* Is this possible?

- 4
\/ Standard search formulation (incremental)

—

S’

* Let’s start with the straightforward, dumb approach, then
fix it.
* States are defined by the values assigned so far

* Initial state: the empty assignment, { }

* Successor function: assign a value to an unassigned variable

that does not conflict with current assignment.

= fail if no legal assignments (not fixable!)

* Goal test: the current assignment is complete

~

-/

Standard search formulation (incremental) (cont.)

This is the same for all CSPs!
Every solution appears at depth n with n variables = use depth-first search
Path is irrelevant, so can also use complete-state formulation.

b = (n — l)d at depth |, hence n! d" leaveslil!

- N/
\/’” Backtracking search

—

* Variable assignments are commutative, i.e.,
[WA=red then NT =green] same as [NT =green then WA=red]

* Only need to consider assignments to a single variable at each

node

= b=d and there are d" leaves

* Depth-first search for CSPs with single-variable assignments is

called backtracking search.
* Backtracking search is the basic uninformed algorithm for CSPs

* Can solve n-queens for n = 25 /

~ NS

g

\/ - Backtracking search

-

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING (assignment, csp) returns soln /failure

if assignment is complete then return assignment

var <« SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result

remove {var = value} from assignment
return failure

17

g

\/ . Backtracking search (cont.)

—]

¢ & 6

Sy ~
-4 Improving backtracking efficiency

=

S—

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

\/ e o e o
\/ Minimum remaining values

* Minimum remaining values (MRV):

choose the variable with the fewest legal values

\—L: _"\—L: _"\—L

- ~—
- Degree heuristic

* Tie-breaker among MRYV variables

* Degree heuristic:

choose the variable with the most constraints on remaining variables

O\

\\

- =/
- Least constraining value

* Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables

\ l‘ Allows 1 value for SA

H:*“ﬂ:*‘\ﬁ:< GEA, o

* Combining these heuristics makes 1000 queens feasible

> NS

S’
N/ e\

\/\/

—

~ ¢ |dea: Keep track of remaining legal values for unassigned variables

Forward checking

* Terminate search when any variable has no legal values

H

(Y.

‘\—LL:; T ‘\—L

| ===}
N,

—4

Sw

WA NT Q NSW Vv SA
ENE[ErE[ErE/ErE[EEE[EEE[EEE
I | 1M Irerireni E[ErE
I | 1 [E[EEN] E[ErE
I | 1 [| — | L

23

g

S

—

S

* Forward checking propagates information from assigned to unassigned

Constraint propagation

variables, but doesn’t provide early detection for all failures:

S S S

WA NT Q NSW Vv SA T
EiE[ErE/meE/ErE[EeE[EEE[EEN
. | EEoE[EEE[E N N] E[EEE
I | 1 E E[ENN] 1L

* NT and SA cannot both be bluel

Constraint propagation repeatedly enforces constraints locally

N/

- N/
\/’” Arc consistency

—

* Simplest form of propagation makes each arc consistent

* X — Y is consistent iff. for every value x of X there is some allowed y
_,‘\ | .‘_L':
5 ~/
WA NT Q NSW v SA T
— 1 1 [m D E] Xmim

* If X loses a value, neighbors of X need to be rechecked

* Arc consistency detects failure earlier than forward checking. Can be run as a)

. 25
preprocessor or after each assignment

"NV & S

\/ Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
~’ inputs: csp, a binary CSP with variables { X, X», ..., X}
local variables: qucue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X;, X;)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed «— false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X|] allows (z,v) to satisfy the constraint X; < X;
then delete 2 from DOMAIN[X;]; removed« true
return removed

* O(n?d?), can be reduced to O(n?d?)

V\J .)

Arc consistency for n-ary CSP?

* How to generalize to the n-ary CSP case?

—

J Limitations of Arc Consistency

* After enforcing arc consistency:

e Can have one solution left

* Can have multiple solutions left

* Can have no solutions left (and not

know it) @
* Arc consistency still runs inside a @ @

backtracking search!
What went

wrong here?

> Y o’ »\‘/\

-
k-Consistency

~

* Increasing degrees of consistency

* T-consistency (node consistency): each single node’s domain
has a value which meets that node’s unary constraints

* 2-consistency (arc consistency): for each pair of nodes, any
consistent assignment to one can be extended to the other

* k-consistency: for each k nodes, any consistent assignment to

k-1 can be extended to the k' node.

* Higher k more expensive to compute

* (You need to know the k=2 case: arc consistency)

<

®@=0

— Strong k-Consistency

¢ Strong k-consistency: also k-1, k-2, ... 1 consistent

S~

~—r

* Claim: strong n-consistency means we can solve without backtracking!

* Why?
* Choose any assignment to any variable
* Choose a new variable
* By 2-consistency, there is a choice consistent with the first
* Choose a new variable
* By 3-consistency, there is a choice consistent with the first 2

* Lots of middle ground between arc consistency and n-consistency! (e.g. k=3,
called path consistency)

- Problem structure

* Tasmania and mainland are independent subproblems

* |dentifiable as connected components of constraint graph

~ NS

Problem structure (cont.)

~—

* Suppose each subproblem has c variables out of n total

* Worst-case solution cost is n/c - d, linear in n

* E.g., n=80, d=2, c=20
e 280 = 4 billion years at 10 million nodes/sec

e 4 - 220 = 0.4 seconds at 10 million nodes/sec

-4 Tree-structured CSPs

* Theorem: if the constraint graph has no loops, the CSP can be solved in O(n.d?)

time.
* Compare to general CSPs, where worst-case time is O(d").

* This property also applies to logical and probabilistic reasoning:

an important example of the relation between syntactic restrictions and the

5~

complexity of reasoning. S J
N N\ J.

- Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that

S—

every node’s parent precedes it in the ordering

eai

2. For j from n down to 2, apply Removelnconsistent(Parent(X,), X)
3. For j from 1 to n, assign X, consistently with Parent(X;).

Why doesn’t this algorithm work with cycles in ’rhe&ons\hyin’r graph? 9
Nl 5. A

—

Nearly tree-structured CSPs
- 7

~—

~ ¢ How to solve the CSP corresponding to this constraint graph using tree
structured CSP?

S—

~—

—

- Nearly tree-structured CSPs (cont.)

* Conditioning: instantiate a variable, prune its neighbors’ domains

O O
e 5" b

Q, O,

* Cutset conditioning: instantiate (in all ways) a set of variables such that the

remaining constraint graph is a tree

* Cutset size ¢ = runtime O(d° : (n — c)d?), very fast for small c.

YN (U >

38

-

Choose a cutset

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

[
|
|
|

]
]
]
]

@‘@"

g

Cutset Conditioning

@:'é@
— | ©
) (b

o

9‘:‘9

&
O

l

4—

A

®
I
O—@
®
o

\

/

Tree Decomposition

~/ -ldea: create a tree-structured graph of mega-variables

- Each mega-variable encodes part of the original CSP @

- Subproblems overlap to ensure consistent solutions

>
«Q
=
(1]
(0]
o
=7
[
>
Q
=
(1]
o
<
Q
=
wn

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
L)

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),

SIDA paipys|] uo sauby

SIDA paJipys] uo sauby

Agree: (M1,M2) €

{((WA=g,5A=g,NT=g), (NT=g,SA=g,Q=g)), ..

3

- -
- lterative algorithms for CSPs

~—

—/* Hill-climbing, simulated annealing typically work with “complete” states, i.e., all

variables assigned.

* To apply to CSPs:

allow states with unsatisfied constraints ‘i‘ ‘i‘

* Operators: reassign variable values
* Variable selection: randomly select any conflicted variable

* Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints

i.e., hill-climb with h(n) = total number of violated constraints

YN (U >

-’/ °

N’

-

* States: 4 queens in 4 columns (44 = 256 states)

* Operators: move queen in column

e Goal test: no attacks

Example: 4-Queens

* Evaluation: h(n) = number of attacks

-

N
W
oy

H B

Summary

* CSPs are a special kind of problem:

* states defined by values of a fixed set of variables

* goal test defined by constraints on variable values
* Backtracking = depth-first search with one variable assigned per node
* Variable ordering and value selection heuristics help significantly

* Forward checking prevents assignments that guarantee later failure

Summary (cont.)

* Constraint propagation (e.g., arc consistency) does additional work to

constrain values and detect inconsistencies
* The CSP representation allows analysis of problem structure
* Tree-structured CSPs can be solved in linear time

* Iterative min-conflicts is usually effective in practice

