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Constraint Satisfaction Problems
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Constraint satisfaction problems (CSPs) 

• Standard search problem: 
• state is a “black box”

• any old data structure that supports goal test, 
evaluation, and successor 

• CSP:
• state is defined by variables Xi with values from 

domain Di

• goal test is a set of constraints specifying 
allowable combinations of values for subsets of 
variable 

• Allows useful general-purpose algorithms with 
more power than standard search algorithms 3



Example: Map-Coloring

• Variables WA, NT, Q, NSW, V , SA, T

• Domains Di = {red, green, blue}

• Constraints: adjacent regions must have different colors 

e.g., WA ≠ NT (if the language allows this), or
(WA, NT ) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .} 4



Example: Map-Coloring (cont.)

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =green} 5



Constraint graph 

• Binary CSP: each constraint relates at most two variables 

• Constraint graph: nodes are variables, arcs show constraints 

• General-purpose CSP algorithms use the graph structure
to speed up search. e.g., Tasmania is an independent subproblem! 6
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Example: n-queens

• Formulation 1:

• Variables:

• Domains:
• Constraints
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Example: Cryptarithmetic
• Variables:

• Domains:

• Constraints:
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Real-World CSPs

• Assignment problems: e.g., Who teaches what class
• Timetabling problems: e.g., Which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … Lots more!

• Many real-world problems involve real-valued variables…



Varieties of CSPs 

• Discrete variables

• finite domains; size d ⇒ O(dn) complete assignments 

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete) 

• infinite domains (integers, strings, etc.) 

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3
• linear constraints solvable, nonlinear undecidable 

• Continuous variables
• e.g., start/end times for Hubble Telescope observations

• linear constraints solvable in poly time by LP methods 
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Varieties of constraints 

• Unary constraints involve a single variable, 

• e.g., SA ≠ green 

• Binary constraints involve pairs of variables, 
• e.g., SA ≠ WA 

• Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column 
constraints 

• Preferences (soft constraints), e.g., red is better than green often representable 
by a cost for each variable assignment 

→ constrained optimization problems 
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Converting n-ary CSP to a binary CSP

• Is this possible?
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Standard search formulation (incremental) 

• Let’s start with the straightforward, dumb approach, then 
fix it.

• States are defined by the values assigned so far

• Initial state: the empty assignment, { } 

• Successor function: assign a value to an unassigned variable 
that does not conflict with current assignment. 

⇒ fail if no legal assignments (not fixable!) 

• Goal test: the current assignment is complete 

14



Standard search formulation (incremental) (cont.)

• This is the same for all CSPs! 

• Every solution appears at depth n with n variables ⇒ use depth-first search 

• Path is irrelevant, so can also use complete-state formulation. 

• b = (n − l)d at depth l, hence n! dn leaves!!!! 
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Backtracking search 

• Variable assignments are commutative, i.e.,
[WA=red then NT =green] same as [NT =green then WA=red] 

• Only need to consider assignments to a single variable at each 
node 

⇒ b=d and there are dn leaves 

• Depth-first search for CSPs with single-variable assignments is 
called backtracking search.

• Backtracking search is the basic uninformed algorithm for CSPs 

• Can solve n-queens for n ≈ 25 
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Backtracking search 
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Backtracking search (cont.) 
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Improving backtracking efficiency 

General-purpose methods can give huge gains in speed: 

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure? 
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Minimum remaining values 

• Minimum remaining values (MRV):
choose the variable with the fewest legal values 
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Degree heuristic 

• Tie-breaker among MRV variables

• Degree heuristic:
choose the variable with the most constraints on remaining variables 
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Least constraining value

• Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables 

• Combining these heuristics makes 1000 queens feasible 
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Forward checking 

• Idea: Keep track of remaining legal values for unassigned variables 

• Terminate search when any variable has no legal values 
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Constraint propagation 

• Forward checking propagates information from assigned to unassigned 
variables, but doesn’t provide early detection for all failures: 

• NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally 
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Arc consistency 

• Simplest form of propagation makes each arc consistent 

• X → Y is consistent iff. for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked 

• Arc consistency detects failure earlier than forward checking. Can be run as a 
preprocessor or after each assignment 25
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Arc consistency algorithm 

• O(n2d3), can be reduced to O(n2d2) 27



Arc consistency for n-ary CSP?

• How to generalize to the n-ary CSP case?
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Limitations of Arc Consistency

• After enforcing arc consistency:

• Can have one solution left

• Can have multiple solutions left

• Can have no solutions left (and not 
know it)

• Arc consistency still runs inside a 
backtracking search!

What went 
wrong here?
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k-Consistency

• Increasing degrees of consistency

• 1-consistency (node consistency): each single node’s domain 
has a value which meets that node’s unary constraints

• 2-consistency (arc consistency): for each pair of nodes, any 
consistent assignment to one can be extended to the other

• k-consistency: for each k nodes, any consistent assignment to 
k-1 can be extended to the kth node.

• Higher k more expensive to compute

• (You need to know the k=2 case: arc consistency)
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Strong k-Consistency
• Strong k-consistency: also k-1, k-2, … 1 consistent

• Claim: strong n-consistency means we can solve without backtracking!

• Why?
• Choose any assignment to any variable
• Choose a new variable
• By 2-consistency, there is a choice consistent with the first
• Choose a new variable
• By 3-consistency, there is a choice consistent with the first 2
• …

• Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, 
called path consistency)



Problem structure 

• Tasmania and mainland are independent subproblems 

• Identifiable as connected components of constraint graph 
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Problem structure (cont.)

• Suppose each subproblem has c variables out of n total 

• Worst-case solution cost is n/c · dc, linear in n

• E.g., n=80, d=2, c=20

• 280 = 4 billion years at 10 million nodes/sec 

• 4 · 220 = 0.4 seconds at 10 million nodes/sec 
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Tree-structured CSPs 

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(n.d2)
time.

• Compare to general CSPs, where worst-case time is O(dn). 

• This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions and the 
complexity of reasoning. 
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Algorithm for tree-structured CSPs 
1. Choose a variable as root, order variables from root to leaves such that 

every node’s parent precedes it in the ordering 

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj).

Why doesn’t this algorithm work with cycles in the constraint graph? 
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Nearly tree-structured CSPs 

• How to solve the CSP corresponding to this constraint graph using tree 
structured CSP?
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Nearly tree-structured CSPs (cont.) 

• Conditioning: instantiate a variable, prune its neighbors’ domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that the 
remaining constraint graph is a tree 

• Cutset size c ⇒ runtime O(dc · (n − c)d2), very fast for small c. 38
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Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset
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Tree Decomposition

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),      
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}

A
gree on    shared vars

NT

SA

¹
WA

¹ ¹

Q

SA

¹
NT

¹ ¹

A
gree on    shared vars

NS
W

SA

¹
Q

¹ ¹

A
gree on    shared vars

V

SA

¹
NS
W

¹ ¹



Iterative algorithms for CSPs 

• Hill-climbing, simulated annealing typically work with “complete” states, i.e., all 
variables assigned.

• To apply to CSPs:

• allow states with unsatisfied constraints 

• Operators: reassign variable values 

• Variable selection: randomly select any conflicted variable 

• Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hill-climb with h(n) = total number of violated constraints 
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Example: 4-Queens 

• States: 4 queens in 4 columns (44 = 256 states) 

• Operators: move queen in column

• Goal test: no attacks

• Evaluation: h(n) = number of attacks 
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Summary

• CSPs are a special kind of problem:

• states defined by values of a fixed set of variables 

• goal test defined by constraints on variable values 

• Backtracking = depth-first search with one variable assigned per node

• Variable ordering and value selection heuristics help significantly 

• Forward checking prevents assignments that guarantee later failure 
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Summary (cont.)

• Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies

• The CSP representation allows analysis of problem structure 

• Tree-structured CSPs can be solved in linear time

• Iterative min-conflicts is usually effective in practice 
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